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Wetting and structure of a fluid in a spherical cavity

Ioannis A. Hadjiagapiou*
Solid State Physics Section, Department of Physics, University of Athens, Panepistimiopolis, Zografos GR-157 84, Athens, G
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The equilibrium local densities, structure, and wetting of a one-component fluid in a spherical cavity, of
variable radiusR, are determined, using density-functional theory, as functions of two parameters characteriz-
ing the system: the radiusR and the cavity/fluid potential parametereW . The cavity acts as an external
potentialVext(r ) on the molecules of the confined fluid, the particles of which are of constant diameterd. The
equilibrium density profile, as a result of strong confinement, develops peaks in the center of the cavity and/or
close to the pore wall and, in certain situations, in other intermediate points; the cavity can also be liquid full,
capillary condensation.
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I. INTRODUCTION

Wetting of planar or curved surfaces and porous media
fluids has received considerable attention in recent years
cause of its industrial~chromatography, membrane transpo
adhesion, lubrication, foams! and theoretical significance a
an application of the statistical physics of nonhomogene
systems. These inhomogeneous classical fluids can be
ied via density-functional theory~DFT!, a very efficient tool
for dealing with interfacial phenomena and nonhomogene
fluids @1,2#. The DFT formulation has successfully been a
plied to adsorption, wetting, layering transitions, and cap
lary condensation at planar and nonplanar substrates.
key point in DFT is attributed to the grand-potential dens
functional VV@r#, wherein,ad hoc, assumptions are intro
duced, motivated by physical reasoning, to render the int
sic Helmholtz free-energy functionalF@r# of the inhomoge-
neous fluid calculable. These are introduced, reflecting
situation at hand, either by the local density approximat
or weighted density approximation, considering the g
metrical characteristics of the system for the calculation
VV@r#.

In the current case, the DFT formulation will be applied
the study of a gas phase enclosed in a spherical cavity~an
infinitely thin solid shell! of variable radiusR. In general, the
thermodynamical properties of a fluid confined in the ca
ties ~pores! of a solid material are altered~sometimes, even
those of the host material! as compared to those of a simila
bulk counterpart, i.e., displacement of the location of
bulk fluid phase boundaries, shifted bulk transitions, a
competition between surface transitions, since small
very small cavities can hold a few adsorbed particles, m
ing the enclosed fluid highly spatially inhomogeneous.
such systems, the packing constraints are very pronoun
because of the strong confinement. The pores of the
material can be of any shape, but, on computational grou
they are chosen to be slitlike, cylindrical, or spherical.

The cylindrical pore is of infinite length and finite radiu
the slitlike consists of two parallel walls of infinite area a
separated by a finite distance; in both cases, the fluid ca
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in contact with a reservoir at constant temperatureT and
chemical potentialm implying an open system; in eithe
case, the appropriate ensemble is the grand canonical. In
current case, the considered spherical cavity is an eleme
an ensemble of similar cavities connected to each other
to the external world by windows and/or narrow channe
enabling them to exchange particles among themselves
with an external reservoir of constant temperatureT and
chemical potentialm, resulting in a net flow of particles
through this pore arrangement; consequently, the proper
semble is the grand canonical. This arrangement of pore
found in zeolites@3#, which are used as membranes for sep
rating gas or liquid mixtures, causing adsorption of partic
by their pores@4#. An alternative choice, is to consider th
the bulk phase of the enclosed phase inside the zeol
pores is the homogeneous phase that would be found if
external force, for maintaining the inhomogeneity, is r
moved @5#. Although the previous assumption is adopte
another contemplation of the system is to consider
spherical cavity as closed, confining a constant numbe
particles, specifieda priori, and study it using the methods o
the canonical ensemble@6#. An important point that is raised
is the equivalence of the results from the two approach
grand-canonical and canonical, a crucial problem of stati
cal mechanics. Since the volume occupied by the cavity
each particle is finite, the number of enclosed particles
always finite, however, within the grand-canonical ensem
it can vary continuously~although it cannot exceed a max
mum value specified by the repulsive interactions, exclud
volume effect!, resulting in a variety of configurations insid
the cavity, in contradistinction to the canonical-ensemble
scription wherein the number of enclosed particles is sp
fied a priori and remains always constant resulting in
single configuration, for a given temperature. The gra
canonical ensemble might produce the same fluid struc
as that by canonical ensemble, in a similar cavity, when
instantaneous number of particles in the grand-canonical
semble coincides with the corresponding number in the
nonical ensemble.

In the statistical mechanics for bulk systems, the proba
ity P(N) that a macroscopic system, in the grand-canon
ensemble, hasN particles exhibits an extremely sharp max
mum atN5^N& and, in this case, the mean value^N& coin-
©2002 The American Physical Society05-1



h

ce
p
le

o
id
e

iv
f

t
v
e
in
at
ui

-

n-

id.
n
ui
d-
ies
e

eo

g

nu
e

tiv
o

ub
of

a

ears
its

e to
re.
ure
and
gas
nce

cal
-

l

sed

f
, so
and

n-

er,
he
ion

ure
dius

hat
s

st
ids
er

IOANNIS A. HADJIAGAPIOU PHYSICAL REVIEW E65 021605
cides with the most probableN* , ^N&5N* , so that the con-
sidered grand-canonical-ensemble systems are those w
number of particles equalŝN& and coincides with the fixed
number of particlesN in the canonical ensemble, equivalen
of ensembles. This coincidence implies that the chemical
tential m is fixed so that the average number of partic
equalsN.

Most studies have been focused on fluids adsorbed
planar substrates, while previous studies of fluids ins
pores dealt with adsorption of hard spheres in a hard sph
cal cavity @5–10#, cylindrical pores@9#, narrow channels
@11#.

The current study is now extended to include attract
interactions in a one-component fluid system composed oN
spherical particles~of diameterd! which, initially, are con-
sidered to be hard spheres and an additional attractive in
action is introduced. These are enclosed in a spherical ca
of radiusR (R>d/2) with its center at the origin of axes. Th
boundary of the cavity is impenetrable and each particle
teracts with an element of the cavity boundary with an
tractive interaction, so the total interaction between a fl
particle and the cavity is

Vext~rW !5nSE
S
wWF~ urW2rW8u!drW8, ~1.1!

wherewWF(urW2rW8u) is the pairwise interaction potential be
tween a fluid molecule atrW and a wall molecule atrW8, nS
wall density andS the area of cavity’s boundary. The pote
tial ~1.1! acts as an external potential for theN-particle sys-
tem in the cavity, inducing the inhomogeneity in the flu
The study considers a suitable grand-potential density fu
tional, adapted for the current model, from which the eq
librium density profile results via the minimum gran
potential principle; the structure, thermodynamic propert
and wetting are also investigated. Similar models have b
applied successfully to planar@12,13#, spherical@14# sub-
strates, and spherical drops@15#.

The state point chosen corresponds to a homogen
bulk vapor phase, of densityrb at reduced temperatureT*
[T/Tc50.8,Tc is the bulk critical temperature and packin
fraction hb5p/6d3rb50.021 717 8

The paper is arranged as follows: In Sec. II the system
defined through a density-functional grand potential. The
merical calculations are in Sec. III and the discussion in S
IV.

II. THEORY

A. Thermodynamic description

When a single planar solid substrate exerts an attrac
force on the particles of a bulk gas phase, under certain c
ditions, some of the particles will be adsorbed by the s
strate, forming a liquidlike film on it and causing wetting
the substrate. The thicknessl of the film, on approaching
saturation, can be finite~partial wetting! or infinite ~complete
wetting @12,13#!. If the gas phase is enclosed in a pore~cy-
lindrical, spherical, slitlike! of a porous solid~host phase!,
then, in addition to the wetting transition, other ones c
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appear, as the capillary condensation. The latter case app
even if the chemical potential or pressure is less than
value at saturation; in this case, gas particles condens
form a dense liquidlike state inside the pore, liquid-full po
The reduction in condensation chemical potential or press
results from the attractive forces between gas particles
the surrounding pore walls; this early condensation of the
phase can be considered as a shift of the bulk coexiste
gas-liquid line due to confinement effects.

The phase equilibria of an enclosed fluid in a spheri
cavity, for sufficiently largeR, can be determined by thermo
dynamic arguments. The temperatureT is smaller than the
bulk critical temperatureTc (T,Tc) and the bulk chemica
potentialm is smaller than that at saturationmsat (m,msat) so
that the bulk fluid is gas. The grand potentialVV is divided
into two contributions, the bulk and surface, and the enclo
fluid adopts the configuration minimizingVV . When the
wall-fluid attraction is relatively strong, a liquidlike film, o
thicknessl , intrudes between the wall and the gas phase
that the liquid phase wets the wall and the respective gr
potentialVgL is

VgL

4p
52

p

3
~R2l !32

pL
1

3
~3l R223l 2R1l 3!1gwLR2

1ggL~R2l !2, ~2.1!

wherepL
1 is the pressure of the metastable liquid with de

sity rL
1 at the same value ofm and gwL , ggL are the wall-

liquid and gas-liquid surface tensions, respectively. Howev
if the wall-fluid attractive interaction becomes stronger, t
enclosed fluid condenses abruptly to a liquid configurat
~liquid-full pore!; the respective grand potentialVL is

VL

4p
52

R3

3
pL

11R2gwL . ~2.2!

Coexistence is possible when

VgL5VL . ~2.3!

Substituting Eq.~2.1! and Eq.~2.2! into Eq. ~2.3!,

p2pL
15

3ggL

R2l
, ~2.4!

which is similar to the Laplace expression for the press
difference across a spherical surface, whose effective ra
of curvature is (2(R2l )/3). When Eq.~2.4! holds, it signals
the beginning of condensation; however, its drawback is t
there is not a systematic way for calculating the thicknesl
of the wetting layer.

B. Density profile

As was mentioned in the introduction, one of the mo
widely used theoretical descriptions of inhomogeneous flu
is the density-functional theory, which relies on a prop
choice of the grand-potential functionalVV@r(r )#; conse-
quently the key step is to specify a form forVV@r(r )# that is
5-2
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tractable and more or less accurate. In general, the grand-potential functional of an inhomogeneous one-component fl
presence of an external fieldVext(r ), representing the substrate, is@1,2#

VV@r~rW !#5E
V
H f hs@r~rW !#1

1

2
r~rW !E

V
r~rW8!FFF1@Vext~rW !2m#r~rW !J drW, ~2.5!
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wherem the bulk vapor chemical potential andV the volume
of the system. The repulsive force contribution to the Hel
holtz free energy is treated in the local-density approxim
tion ~LDA ! in that f hs@r(rW)# is the Helmholtz free-energy
density of a uniform hard-sphere fluid at densityr(rW), r
5urWu is the distance to the center of the cavity. Althou
LDA fails to describe the oscillatory behavior of the dens
profile at strongly attractive walls, it gives reasonable res
for the surface tension, adsorption, and the density profile
the free liquid-vapor interface. The long-range attract
forces between fluid molecules are treated in the mean-
approximation,FFF(rW) is the attractive part of the pairwis
potential between two fluid moleculesr distant apart. The
equilibrium densityr(rW) of the inhomogeneous fluid is ob
tained by minimizing Eq.~2.5! through the variational prin-
ciple dVV@r(rW)#/dr(rW)50,

m5Vext~rW !1mhs@r~rW !#1E
V
r~rW8!FFF~ urW2rW8u!drW8,

~2.6!

wheremhs@r(rW)#5] f hs@r(rW)#/]r(rW) is the chemical poten
tial of a uniform hard-sphere fluid of densityr(rW). Choosing
the potentialsVext(rW) and FFF(rW), properly, the integral
equation~2.6! can be converted to a functional nonline
second-order differential equation with appropriate bound
conditions. The fluid-fluid potential is

FFF~r !52~al3/4p!e2lr /lr , ~2.7!

wherel is an inverse-range parameter anda is given by

a52E
V
FFF~r !drW. ~2.8!

If a wall molecule interacts with a fluid molecule via
potential of the form,WWF(r )52Ce2lWF

r
/(lWFr ), where

lWF5l ~lWF inverse-range parameter of the wall-fluid a
tractive interaction! and C are positive constants, then E
~1.1! gives

Vext~r !52eW~lR!e2~lR!
sinh~lr !

lr
, ~2.9a!

whereeW is a new parameter characterizing the substrate
proportional tons andC; it is a measure of the well depth fo
the wall-fluid interaction. A feature of the potential~2.9a! is
that its strength~that part separated from the distance dep
dence,eW(lR)e2(lR)) depends strongly on substrate’s r
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dius R; this dependence has significant repercussions on
structure of films inside the cavity. In the limitr→0, Eq.
~2.9a! takes the form

lim
r→0

Vext~r !52eW~lR!e2lR, ~2.9b!

while on the cavity boundary,r 5R,

Vext~R!52
eW

2
@12e22lR#, ~2.9c!

which, for largeR, Vext(R)'2eW/2, i.e., independent ofR
the spherical substrate becomes equivalent to a planar
Although the chosen interaction potentials are short rang
they are not only suitable for numerical calculations, but th
yield an immediate classification of the wetting class
@12,13# and provide the general characteristics of wetti
phenomena and interfacial structure, sacrificing some
grees of quantitative accuracy.

The chosen short-range interaction potentials~2.7!, ~2.9a!
have repercussions on the wetting behavior of the syst
inducing first- or second-~continuous! order wetting transi-
tions. This behavior depends on the inverse range param
l andlWF , characterizing the fluid-fluid~2.7! and wall-fluid
~2.9a! interactions; if they are taken to be equal, the result
wetting transitions are continuous, called short-range crit
wetting because they are dominated by short-range fo
@16#, on the opposite case, the transitions can be first orde
continuous depending on their ratio and the strength of
wall-fluid interaction @17,18#. Although critical wetting at-
tracted much theoretical attention@1,2,19,20#, it eluded ex-
perimental confirmation, it was observed by Ross, Bonn,
Meunier @21# in the binary liquid mixture of methanol an
nonane. In this mixture, the film thickness of methanol
nonane increases continuously from thin to thick and
divergence of the thickness is logarithmic, consistent w
the renormalization-group and mean-field calculations
short-range critical wetting@20,22#.

If the interaction forces are long range~algebraic decay!,
the wetting transitions are, in general, first order; continuo
wetting transitions can also occur, called long-range criti
wetting transitions, observed for the first time in an expe
ment by Ragilet al. @23#; they observed, using ellipsometr
a continuous transition from a thin film of pentane on wa
to a thick one, on increasing temperatureT from low values
to a wetting temperatureTW>53 °C when the adsorbed film
diverges@16#.

From the previous discussions, one concludes that the
der of the wetting transition governs the evolution of t
thickness of the wetting film; a first-order transition yields
5-3
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jump in film thickness when temperatureT approachesTW ,
while in a second-order transition films grow continuously
T approachesTW .

For the sake of simplicity, all subsequent quantities a
equations are transformed to dimensionless units,

m* [bm, p* [bd3p, R* [lR, r * [lr , r* [rd3

a* [ba/d3511.102/T* , Vext* [bVext, ~2.10!

although the asterisks will be suppressed,p is pressure,b
5(kBT)21, andkB Boltzmann’s constant.

Substituting the potentials~2.7! and ~2.9a! into Eq. ~2.6!,
and differentiating the resulting equation twice with resp
to r, yields

mhs9 @r~r !#1
2

r
mhs8 @r~r !#2mhs@r~r !#1m52ar~r !,

~2.11!

the prime denotes derivative with respect tor. The final
equation~2.11! depends only on the radial distancer, since
both potentials are spherically symmetric. This is a fun
tional differential equation, depending onr(r ); its solution
is uniquely defined if supplemented by appropriate bound
conditions. In the limitr→0, the solution is less well be
haved, since at the originr 50 it is singular unlessmhs8 (r )
vanishes in that limit,

lim
r→0

mhs8 ~r !

r
5 lim

r→0

dmhs8 ~r !/dr

dr/dr
5 lim

r→0
mhs9 ~r !. ~2.12!

according to de l’ Hopital rule, therefore, in the neighbo
hood of the origin~2.11! becomes

lim
r→0

mhs9 ~r !5 1
3 @mhs~r !2m2ar~r !#. ~2.13!

Thus, the first boundary condition is

mhs8 ~0!50, ~2.14!

and the other on the substrate,

mhs8 ~R!5eW2S 11
1

RD @mhs~R!2m#, ~2.15!

by differentiating Eq.~2.6! once with respect tor and evalu-
ating it atr 5R. The differential equation~2.11! in conjunc-
tion with the boundary conditions~2.14!, ~2.15! constitute
the problem under consideration, which will be solved n
merically since Eq.~2.11! is an implicit nonlinear second
order differential equation and cannot be solved analytica

The calculation will be based on the Carnahan-Starl
approximation for hard-spheres@24#; the pressure and chem
cal potential are, respectively,

bphs~r!5r
11h1h22h3

~12h!3 , ~2.16a!
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bmhs~r!5 ln h1
8h29h213h3

~12h!3 , ~2.16b!

whereh5prd3/6 is the packing fraction, which will be use
as the dependent variable instead of the densityr(r ).

Substituting Eq.~2.16b! into Eq. ~2.11! yields

h9~r !52
2

r
h8~r !2B1~h!h82~r !2B2~h!2B3~h!h~r !,

~2.17!

subject to the boundary conditions resulting from Eqs.~2.14!
and ~2.15!,

h8~0!50, ~2.18a!

h8~R!5H eW2S 11
1

RD @mhs„h~R!…2m#J Y
A1@h~R!#, ~2.18b!

where

A1~h!5
]~bmhs!

]h
5

1

h
1

822h

~12h!2 , A2~h!5
]A1~h!

]h

52
1

h2 1
3026h

~12h!5 , ~2.19a!

B1~h!5
A2~h!

A1~h!
, B2~h!5

bm2bmhs~h!

A1~h!
,

B3~h!5
6ab

pA1~h!
. ~2.19b!

Initially, the coexisting bulk densitiesrV andrL are cal-
culated for various temperatures by solving the simultane
equations

p~rW!5p~rL!, m~rW!5m~rL!, ~2.20!

for T50.8, rV50.041 478, andrL50.586 731.

III. RESULTS

The boundary value problem~2.17!, ~2.18! was solved
numerically for a wide range of values ofR and eW ; the
solution is the equilibrium density profile, which, dependi
on the values ofR and eW , displays various growth mode
inside the cavity and the boundary various types of wett
behavior.

Initially, the density profiles for a cavity of radiusR
54.5 are evaluated for various values ofeW . The configu-
rations, adopted by the confined fluid and possible ph
transitions, depend on the specific value ofeW and the inter-
particle interactions.

For small values ofeW (eW<12.15) a spherical liquid
drop, of constant densityr~0!, grows in the origin of the
cavity, the rest part of the density profile is monotonica
decreasing up to the pore boundary, resulting in a deple
5-4
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FIG. 1. Density profilesh1(r )[h(r )2h(0) vs radial distancer from the center of a spherical cavity of radiusR54.5, labeled by the
parametereW , characterizing the wall-particle interaction:~a! eW512. The density profile consists of a thin liquid drop in the origin@density
h1(0)# and a monotonically decreasing branch up to the boundary, with contact densityh1W , such thath1(0).h1W so that the boundary
is weakly wetted.~b! eW512.16. A thin liquid drop grows in the origin with densityh1(0), theboundary is covered by a layer of adsorb
particles with contact densityh1W.h1(0), strong wetting of the boundary.~c! eW512.21. The density profile consists of a thick liquid dro
in the origin ~thin-thick transition! and a thin film at the boundary withh1W,h1(0), weak wetting of the boundary.~d! eW512.22. The
density profile consists of a thick liquid drop in the origin and a monotonically increasing branch up to the boundary which wets@h1W

.h1(0)#, the cavity is liquid full, capillary condensation. Both quantities are dimensionless. Remark. Each plot represents the d
@h1(r )[h(r )2h(0)#, so that the structure of the confined fluid is more evident.
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of particles at the pore wall and a subsequent reduction
wetting ~weak wetting!. The local density at the pore wa
~rW , contact value! is an overall minimum, Fig. 1~a!; how-
ever, foreW512.16, in addition to the thin liquid drop in th
origin, the wall now attracts the particles favorably, formi
a film at the wall, wherein the contact value exhibits an ov
all maximum @r(0),rW# because of the strong accumul
tion of particles within the wall region, strong wettin
~weak-strong wetting transition!. The cavity region, between
the two shells, presents a depletion of particles and the d
sity profile attains a minimum value at an interior point, F
1~b!. For 12.17<eW<12.21, the density profile consists o
two branches: the thin liquid drop in the origin, as in Fig
1~a!, 1~b!, is transformed into a thick one, thin-thick trans
tion, the second branch is monotonically decreasing up to
pore boundary implying weak-wetting~strong-weak wetting
transition!; the contact value is an overall minimum of th
density profile, Fig. 1~c!. For eW512.22, the thick liquid
drop in the origin persists but the second branch of the d
sity profile now increases steadily from the edge of the c
02160
of
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n-
.

.

e
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tral film to the wall where the density attains a maximu
value @r(0),rW# due to the strong attraction of the wa
~strong wetting! resulting in a filling transition since the por
is now liquid full @capillary condensation, Fig. 1~a!#. For
12.23<eW<12.33, the weak-wetting situation reappea
@r(0).rW# with a thick liquid drop in the origin and the
system returns to the situation depicted in Fig. 1~c!. On fur-
ther increasingeW , 12.34<eW<12.37, the system jump
from thick to thin liquid drop formation in the origin~thick-
thin transition!; the wall attracts strongly the particle
@r(0),rW# forming a film in the region of the boundary
strong wetting~weak-strong wetting transition!; the contact
value is a maximum while a depletion of particles appears
the region between the two branches as in Fig. 1~b! and,
ultimately, for eW>12.38 the system makes a transition
the initial case, Fig. 1~a!, with a single thin liquid drop in the
origin. The formation of the central liquid drops~mainly the
thicker ones! is related to the strong potential field appeari
in the pore center in certain circumstances, since the stre
of the wall-particle potentialVext(r ) depends strongly onR
5-5
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~2.9a!; in pore centerVext(0)52eWRe2R while at boundary
Vext(R)52(eW/2)(12e22R) resulting in a weaker field a
boundary for theR’s under consideration; forR>6, Vext(R)
becomes constant@Vext(R)>2eW/2# and thus equivalent to
a planar wall. This behavior ofVext(r ) favors, in some cases
the formation of a liquid drop in the origin, although the fin
equilibrium configuration is a result of all interactions.

Now, we proceed to examine the behavior of the fluid
various values ofR and eW . Both Figs. 2~a,b!, where R
51.05 andR51.3, respectively, correspond to the liquid-fu
pore; however, they differ in the way the condensation
curs. In the former case, the liquid-full pore consists o
thick liquid drop in the origin and a monotonically increasin
branch up to the wall because of the strong wall attract
and the contact value is a maximum of the overall densit
in the latter case, the pore is nearly full of the liquid phase
almost constant density, except in the origin where a t
liquid drop grows, thus the condensation, practically, occ

FIG. 2. Density profileh1(r ) vs radial distancer from the cen-
ter of a spherical cavity of radius and wall parameter, respectiv
~a! R51.05,eW51.64,~b! R51.3,eW51.3. In both cases, the cav
ties are liquid full, in case~b! the cavity, practically, is full of a
constant-density liquid, while in case~a! the density profile consists
of two branches, the one at the boundary corresponds to a de
phase. Both quantities are dimensionless.
02160
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n
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in the whole pore@25#; the maximum value of the densit
profile occurs in an intermediate point and not at the wall,
usually in strong wetting, although this value does not dif
significantly from the contact value. The structure of the co
fined fluid in the latter case is due to the stronger poten
field in comparison to that in the former one. These tw
characteristic cases can be juxtaposed with the wetting
planar wall; the former case, corresponds to the coexiste
of two films, a thin and a thick~prewetting transition!, while
the latter one, corresponds to the complete wetting of
planar wall by a liquid film of infinite thickness@12#.

However, this is not the only structure that can be o
served in a cavity, more complex structures can also app
due to packing constraints. In such a case, the density pr
is nonmonotonic in that, the particles in a cavity can be
calized in various points forming shells, as in Fig. 3, whe
R51.25 andeW51.3. In this case, two zones of strong lo
calization appear in intermediate points, one close to the
gin and the other to the boundary, due to the accumulatio
particles in the respective regions, while a very thin liqu
drop grows at the origin. The points of strong localization a
connected by a very long ‘‘bridge,’’ forming a relativel
thick film, with mean density larger thanr~0!, and occupying
the larger part of the cavity. However, the wall attraction
not strong enough, resulting in a depletion of particles at
wall region @r(0).rW#, the corresponding branch is de
creasingly monotonic and the contact value is an abso
minimum of the density profile, weak wetting.

A similar structure can appear in larger cavities, see F
4, whereR56 andeW59, where the density profile is als
nonmonotonic and corresponds to three branches: The p
cipal one is a thick liquid drop in the origin. The pore wa
attracts the particles moderately, thus the corresponding
is not so thick as in strong wetting, andrW is not much larger
than r~0!. Between these two branches there exists a sh

y,

ser

FIG. 3. Density profileh1(r ) vs radial distancer from the cen-
ter of a spherical cavity of radiusR51.25 and wall parametereW

51.3. The profile corresponds to two shells, one localized clos
the center and the other to the boundary connected by a very
‘‘bridge.’’ The wetting of the boundary is weak,h1W,h1(0). Both
quantities are dimensionless.
5-6
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closer to the origin, whose peak-densityrp is larger thanr~0!
andrW . The thick liquid film in cavity’s center results from
the strong attractive fieldVext(0)52eWRe2R, present atr
50 and influenced byR, in contrast to its value at the bound
ary where it is constant,Vext(R)>2eW/2 and noninfluenced
by R, in the latter case, the boundary behaves as a planar
@2,12,26#.

The variation of the width of the spherical liquid dro
formed in the center of the cavity, for various values ofR,
can be traced out if we consider its radiusRhom, Fig. 5.Rhom
is the radius for which the derivative of the density wi
respect to the radial distancer vanishes for everyr ,Rhom.
For smallR’s ~smaller or equal to 4! it varies significantly, in
some cases is negligible~e.g., R51.5 or R54!, while it
attains a maximum value forR53; for largerR’s, Rhom in-
creases steadily, which is an indication that the system
comes equivalent to one with planar substrate instead
spherical.

IV. DISCUSSION

The equilibrium local densities and structure of a on
component fluid confined in a spherical cavity and wetting
the boundary have been investigated via density-functio
theory considering short-range interactions between the fl
particles and wall fluid; although these interactions do
yield the right physics for any physical system, such a s
tem was found wherein the wetting transition is consist
with the short-range critical wetting@21#. This investigation
has pointed out the existence of significant structure ins
the cavity, monotonic or nonmonotonic density profiles. D
pending onR andeW , the fluid particles are accumulated n
only in the center of the cavity or its boundary, but also
intermediate points, so that the density profile possesses
ous shells and becomes nonmonotonic, that is, the distr
tion of the particles of the confined fluid, in some cas

FIG. 4. Density profileh1(r ) vs radial distancer from the cen-
ter of a spherical cavity of radiusR56 and wall parametereW

59. The profile consists of a thick liquid drop in the center, a fi
at the boundary and a concentric spherical shell close to the cav
center with a high peak density. The wetting of the boundary
strong,h1W.h1(0). Both quantities are dimensionless.
02160
all

e-
of

-
f
al
id
t
-
t

e
-

ri-
u-
,

tends to be organized into layered structures, forming c
centric spherical shells around the cavity center; this is
flected in the oscillations of the mean local density with
dial distance, provided that the boundary is smooth on
molecular scale@27#. The layering can be captured better if
more sophisticated theory is used~smoothed, weighted den
sity approximation@1#!, but the behavior found earlier, ac
cording to LDA, is an indication that this approximation ca
capture the qualitative behavior of a system satisfactor
The radiusRhom of the drop formed in the center varies fro
very small values~Rhom!R, see Fig. 5!, enclosing a few
particles, up toR, filling the cavity, capillary condensation
The specific case (Rhom/R)!1 can enclose even one partic
~Fig. 5! and corresponds to the so-called quasi-ze
dimensional~0D! situation, wherein the effective dimension
ality of the fluid inside the ‘‘drop’’ is reduced drastically an
can be assumed as a limiting behavior of a 3D system.
0D cavity cannot hold more than one particle and this not
can be used for describing the freezing transition@28#. When
the confined fluid does not fill the cavity, the central dens
r~0! varies, in that the peak of the density atr 50 grows with
^N& and R and at this point differences appear between
theoretical and computational results@6#.

The drop formed in the center of the cavity imitates a r
liquid drop in a vapor background, thus it will exhibit
similar behavior, nevertheless. Its bounding surface is
sharp but undergoes thermally excited surface oscillatio
which consist of various modes. The lowest mode cor
sponds to a translation of the drop through the cavity;
cause of the absence of a radial stabilizing field~e.g., gravi-
tational!, the drop is free to wander throughout the cavity a
there is a possibility of the drop to collide with the cavi
boundary. The higher modes cause size-dependent phe
ena, as is the dependence of the mean-square surface t
ness on the logarithm of the drop radius. These surface fl
tuations are superimposed on the original surface, which

FIG. 5. The radiusRhom vs the radiusR of the cavity.Rhom is a
measure of the thickness of the liquid drop grown in the cente
cavity. It shows significant variation forR smaller than or equal to
4. Both quantities are dimensionless.
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an intrinsic thickness, and in an experiment for the meas
ment of the thickness of the interface it is difficult to separ
the intrinsic and capillary components@29#.

The surface tension~mechanical and equimolar! and the
respective dividing surfaces cannot be defined rigorously
cause the system consists of a small number of partic
since the number of particles and the radius of the cavity
nd

on

R

J.

m

ys

J.

02160
e-
e

e-
s;
re

finite there cannot be wetting transitions as they appear
system with a planar wall@12,13#.
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